python build Decision Tree on bank note dataset

description: build Decision Tree from bank note dataset in python

CART on the Bank Note dataset

1
2
3
from random import seed
from random import randrange
from csv import reader

Load a CSV file

1
2
3
4
5
def load_csv(filename):
file = open(filename, "r")
lines = reader(file)
dataset = list(lines)
return dataset

Convert string column to float

1
2
3
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())

Split a dataset into k folds

1
2
3
4
5
6
7
8
9
10
11
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split

Calculate accuracy percentage

1
2
3
4
5
6
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0

Evaluate an algorithm using a cross validation split

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores

Split a dataset based on an attribute and an attribute value

1
2
3
4
5
6
7
8
def test_split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append(row)
else:
right.append(row)
return left, right

Calculate the Gini index for a split dataset

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def gini_index(groups, classes):
# count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
# sum weighted Gini index for each group
gini = 0.0
for group in groups:
size = float(len(group))
# avoid divide by zero
if size == 0:
continue
score = 0.0
# score the group based on the score for each class
for class_val in classes:
p = [row[-1] for row in group].count(class_val) / size
score += p * p
# weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)
return gini

Select the best split point for a dataset

1
2
3
4
5
6
7
8
9
10
def get_split(dataset):
class_values = list(set(row[-1] for row in dataset))
b_index, b_value, b_score, b_groups = 999, 999, 999, None
for index in range(len(dataset[0])-1):
for row in dataset:
groups = test_split(index, row[index], dataset)
gini = gini_index(groups, class_values)
if gini < b_score:
b_index, b_value, b_score, b_groups = index, row[index], gini, groups
return {'index':b_index, 'value':b_value, 'groups':b_groups}

Create a terminal node value

1
2
3
def to_terminal(group):
outcomes = [row[-1] for row in group]
return max(set(outcomes), key=outcomes.count)

Create child splits for a node or make terminal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def split(node, max_depth, min_size, depth):
left, right = node['groups']
del(node['groups'])
# check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal(left + right)
return
# check for max depth
if depth >= max_depth:
node['left'], node['right'] = to_terminal(left), to_terminal(right)
return
# process left child
if len(left) <= min_size:
node['left'] = to_terminal(left)
else:
node['left'] = get_split(left)
split(node['left'], max_depth, min_size, depth+1)
# process right child
if len(right) <= min_size:
node['right'] = to_terminal(right)
else:
node['right'] = get_split(right)
split(node['right'], max_depth, min_size, depth+1)

Build a decision tree

1
2
3
4
def build_tree(train, max_depth, min_size):
root = get_split(train)
split(root, max_depth, min_size, 1)
return root

Make a prediction with a decision tree

1
2
3
4
5
6
7
8
9
10
11
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']

Classification and Regression Tree Algorithm

1
2
3
4
5
6
7
def decision_tree(train, test, max_depth, min_size):
tree = build_tree(train, max_depth, min_size)
predictions = list()
for row in test:
prediction = predict(tree, row)
predictions.append(prediction)
return(predictions)

Test CART on Bank Note dataset

1
seed(1)

load and prepare data

1
2
filename = 'data_banknote_authentication.csv'
dataset = load_csv(filename)

convert string attributes to integers

1
2
for i in range(len(dataset[0])):
str_column_to_float(dataset, i)

evaluate algorithm

1
2
3
4
5
6
n_folds = 5
max_depth = 5
min_size = 10
scores = evaluate_algorithm(dataset, decision_tree, n_folds, max_depth, min_size)
print('Scores: %s' % scores)
print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

output

1
2
3
Scores: [100.0, 100.0, 100.0, 100.0, 100.0]

Mean Accuracy: 100.000%