simplest example of self-build LSTM in python

description: simple lstm example tensorflow

compute sigmoid nonlinearity

1
2
3
def sigmoid(x):
output = 1 / (1 + np.exp(-x))
return output

convert output of sigmoid function to its derivative

1
2
def sigmoid_output_to_derivative(output):
return output * (1 - output)

training dataset generation

1
2
3
4
5
6
7
8
9
10
int2binary = {}
binary_dim = 8

largest_number = pow(2, binary_dim)
# generate binary table
binary = np.unpackbits(
np.array([range(largest_number)], dtype=np.uint8).T, axis=1)
# int + binary array pair
for i in range(largest_number):
int2binary[i] = binary[i]

input variables

1
2
3
4
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1

initialize neural network weights

1
2
3
4
5
6
7
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1 
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1

synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)

training logic # 训练的次数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
for j in range(10000):

# generate a simple addition problem (a + b = c)
a_int = np.random.randint(largest_number / 2) # int version
a = int2binary[a_int] # binary encoding like a: [0, 0, 0, 0, 1, 0, 0, 1]

b_int = np.random.randint(largest_number / 2) # int version
b = int2binary[b_int] # binary encoding like b: [0, 0, 1, 1, 1, 1, 0, 0]

# true answer
c_int = a_int + b_int
c = int2binary[c_int]

# where we'll store our best guess (binary encoded)
d = np.zeros_like(c) # like [0, 0, 0, 0, 0, 0, 0, 0]

overallError = 0

layer_2_deltas = list()
layer_1_values = list() # restore hidden layer for next timestep
layer_1_values.append(np.zeros(hidden_dim))

# moving along the positions in the binary encoding
for position in range(binary_dim):
# generate input and output
X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]]) # like [[1, 0]]
y = np.array([[c[binary_dim - position - 1]]]).T # [[1]]
# hidden layer (input ~+ prev_hidden)
layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))

# output layer (new binary representation)
layer_2 = sigmoid(np.dot(layer_1, synapse_1))
# calculate the difference and error
layer_2_error = y - layer_2
layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))
overallError += np.abs(layer_2_error[0])
# decode estimate so we can print it out
d[binary_dim - position - 1] = np.round(layer_2[0][0])

# store hidden layer so we can use it in the next timestep
layer_1_values.append(copy.deepcopy(layer_1))

future_layer_1_delta = np.zeros(hidden_dim)

# update weights
for position in range(binary_dim):
X = np.array([[a[position], b[position]]])
layer_1 = layer_1_values[-position - 1]
prev_layer_1 = layer_1_values[-position - 2]

# error at output layer
layer_2_delta = layer_2_deltas[-position - 1]
# error at hidden layer
layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + \
layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
# let's update all our weights so we can try again
synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
synapse_0_update += X.T.dot(layer_1_delta)

future_layer_1_delta = layer_1_delta

synapse_0 += synapse_0_update * alpha
synapse_1 += synapse_1_update * alpha
synapse_h += synapse_h_update * alpha

synapse_0_update *= 0
synapse_1_update *= 0
synapse_h_update *= 0

# print out progress
if (j % 1000 == 0):
print("Error:" + str(overallError))
print("Pred:" + str(d))
print("True:" + str(c))
out = 0
for index, x in enumerate(reversed(d)):
out += x * pow(2, index)
print(str(a_int) + " + " + str(b_int) + " = " + str(out))
print("------------")

output

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Error:[3.45638663]
Pred:[0 0 0 0 0 0 0 1]
True:[0 1 0 0 0 1 0 1]
9 + 60 = 1
------------
Error:[3.63389116]
Pred:[1 1 1 1 1 1 1 1]
True:[0 0 1 1 1 1 1 1]
28 + 35 = 255
------------
Error:[3.91366595]
Pred:[0 1 0 0 1 0 0 0]
True:[1 0 1 0 0 0 0 0]
116 + 44 = 72
------------
Error:[3.72191702]
Pred:[1 1 0 1 1 1 1 1]
True:[0 1 0 0 1 1 0 1]
4 + 73 = 223
------------
Error:[3.5852713]
Pred:[0 0 0 0 1 0 0 0]
True:[0 1 0 1 0 0 1 0]
71 + 11 = 8
------------
Error:[2.53352328]
Pred:[1 0 1 0 0 0 1 0]
True:[1 1 0 0 0 0 1 0]
81 + 113 = 162
------------
Error:[0.57691441]
Pred:[0 1 0 1 0 0 0 1]
True:[0 1 0 1 0 0 0 1]
81 + 0 = 81
------------
Error:[1.42589952]
Pred:[1 0 0 0 0 0 0 1]
True:[1 0 0 0 0 0 0 1]
4 + 125 = 129
------------
Error:[0.47477457]
Pred:[0 0 1 1 1 0 0 0]
True:[0 0 1 1 1 0 0 0]
39 + 17 = 56
------------
Error:[0.21595037]
Pred:[0 0 0 0 1 1 1 0]
True:[0 0 0 0 1 1 1 0]
11 + 3 = 14
------------

reference

https://blog.csdn.net/zzukun/article/details/49968129